
O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

1 of 16 12/31/2006 9:27 PM

Read this article in:

Chinese

French

German

Japanese

Korean

Spanish

 Published on O'Reilly (http://www.oreilly.com/)
 http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

 See this if you're having trouble printing code examples

What Is Web 2.0

Design Patterns and Business Models for the Next Generation of

Software

by Tim O'Reilly

09/30/2005

The bursting of the dot-com bubble in the fall of 2001 marked a turning point for the

web. Many people concluded that the web was overhyped, when in fact bubbles and

consequent shakeouts appear to be a common feature of all technological

revolutions. Shakeouts typically mark the point at which an ascendant technology is

ready to take its place at center stage. The pretenders are given the bum's rush, the

real success stories show their strength, and there begins to be an understanding of

what separates one from the other.

The concept of "Web 2.0" began with a conference brainstorming session between

O'Reilly and MediaLive International. Dale Dougherty, web pioneer and O'Reilly

VP, noted that far from having "crashed", the web was more important than ever, with exciting new

applications and sites popping up with surprising regularity. What's more, the companies that had survived

the collapse seemed to have some things in common. Could it be that the dot-com collapse marked some kind

of turning point for the web, such that a call to action such as "Web 2.0" might make sense? We agreed that it

did, and so the Web 2.0 Conference was born.

In the year and a half since, the term "Web 2.0" has clearly taken hold, with more than 9.5 million citations in

Google. But there's still a huge amount of disagreement about just what Web 2.0 means, with some people

decrying it as a meaningless marketing buzzword, and others accepting it as the new conventional wisdom.

This article is an attempt to clarify just what we mean by Web 2.0.

In our initial brainstorming, we formulated our sense of Web 2.0 by example:

Web 1.0 Web 2.0

DoubleClick --> Google AdSense

Ofoto --> Flickr

Akamai --> BitTorrent

mp3.com --> Napster

Britannica Online --> Wikipedia

personal websites --> blogging

evite --> upcoming.org and EVDB

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

2 of 16 12/31/2006 9:27 PM

domain name speculation --> search engine optimization

page views --> cost per click

screen scraping --> web services

publishing --> participation

content management systems --> wikis

directories (taxonomy) --> tagging ("folksonomy")

stickiness --> syndication

The list went on and on. But what was it that made us identify one application or approach as "Web 1.0" and

another as "Web 2.0"? (The question is particularly urgent because the Web 2.0 meme has become so

widespread that companies are now pasting it on as a marketing buzzword, with no real understanding of just

what it means. The question is particularly difficult because many of those buzzword-addicted startups are

definitely not Web 2.0, while some of the applications we identified as Web 2.0, like Napster and BitTorrent,

are not even properly web applications!) We began trying to tease out the principles that are demonstrated in

one way or another by the success stories of web 1.0 and by the most interesting of the new applications.

1. The Web As Platform

Like many important concepts, Web 2.0 doesn't have a hard boundary, but rather, a gravitational core. You

can visualize Web 2.0 as a set of principles and practices that tie together a veritable solar system of sites that

demonstrate some or all of those principles, at a varying distance from that core.

Figure 1 shows a "meme map" of Web 2.0 that was developed at a brainstorming session during FOO Camp,

a conference at O'Reilly Media. It's very much a work in progress, but shows the many ideas that radiate out

from the Web 2.0 core.

For example, at the first Web 2.0 conference, in October 2004, John Battelle and I listed a preliminary set of

principles in our opening talk. The first of those principles was "The web as platform." Yet that was also a

rallying cry of Web 1.0 darling Netscape, which went down in flames after a heated battle with Microsoft.

What's more, two of our initial Web 1.0 exemplars, DoubleClick and Akamai, were both pioneers in treating

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

3 of 16 12/31/2006 9:27 PM

the web as a platform. People don't often think of it as "web services", but in fact, ad serving was the first

widely deployed web service, and the first widely deployed "mashup" (to use another term that has gained

currency of late). Every banner ad is served as a seamless cooperation between two websites, delivering an

integrated page to a reader on yet another computer. Akamai also treats the network as the platform, and at a

deeper level of the stack, building a transparent caching and content delivery network that eases bandwidth

congestion.

Nonetheless, these pioneers provided useful contrasts because later entrants have taken their solution to the

same problem even further, understanding something deeper about the nature of the new platform. Both

DoubleClick and Akamai were Web 2.0 pioneers, yet we can also see how it's possible to realize more of the

possibilities by embracing additional Web 2.0 design patterns.

Let's drill down for a moment into each of these three cases, teasing out some of the essential elements of

difference.

Netscape vs. Google

If Netscape was the standard bearer for Web 1.0, Google is most certainly the standard bearer for Web 2.0, if

only because their respective IPOs were defining events for each era. So let's start with a comparison of these

two companies and their positioning.

Netscape framed "the web as platform" in terms of the old software paradigm: their flagship product was the

web browser, a desktop application, and their strategy was to use their dominance in the browser market to

establish a market for high-priced server products. Control over standards for displaying content and

applications in the browser would, in theory, give Netscape the kind of market power enjoyed by Microsoft in

the PC market. Much like the "horseless carriage" framed the automobile as an extension of the familiar,

Netscape promoted a "webtop" to replace the desktop, and planned to populate that webtop with information

updates and applets pushed to the webtop by information providers who would purchase Netscape servers.

In the end, both web browsers and web servers turned out to be commodities, and value moved "up the stack"

to services delivered over the web platform.

Google, by contrast, began its life as a native web application, never sold or packaged, but delivered as a

service, with customers paying, directly or indirectly, for the use of that service. None of the trappings of the

old software industry are present. No scheduled software releases, just continuous improvement. No licensing

or sale, just usage. No porting to different platforms so that customers can run the software on their own

equipment, just a massively scalable collection of commodity PCs running open source operating systems

plus homegrown applications and utilities that no one outside the company ever gets to see.

At bottom, Google requires a competency that Netscape never needed: database management. Google isn't

just a collection of software tools, it's a specialized database. Without the data, the tools are useless; without

the software, the data is unmanageable. Software licensing and control over APIs--the lever of power in the

previous era--is irrelevant because the software never need be distributed but only performed, and also

because without the ability to collect and manage the data, the software is of little use. In fact, the value of the

software is proportional to the scale and dynamism of the data it helps to manage.

Google's service is not a server--though it is delivered by a massive collection of internet servers--nor a

browser--though it is experienced by the user within the browser. Nor does its flagship search service even

host the content that it enables users to find. Much like a phone call, which happens not just on the phones at

either end of the call, but on the network in between, Google happens in the space between browser and

search engine and destination content server, as an enabler or middleman between the user and his or her

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

4 of 16 12/31/2006 9:27 PM

A Platform Beats an Application

Every Time

In each of its past confrontations

with rivals, Microsoft has

successfully played the platform

card, trumping even the most

dominant applications. Windows

allowed Microsoft to displace

Lotus 1-2-3 with Excel,

WordPerfect with Word, and

Netscape Navigator with Internet

Explorer.

This time, though, the clash isn't

between a platform and an

application, but between two

platforms, each with a radically

online experience.

While both Netscape and Google could be described as software companies, it's clear that Netscape belonged

to the same software world as Lotus, Microsoft, Oracle, SAP, and other companies that got their start in the

1980's software revolution, while Google's fellows are other internet applications like eBay, Amazon,

Napster, and yes, DoubleClick and Akamai.

DoubleClick vs. Overture and AdSense

Like Google, DoubleClick is a true child of the internet era. It harnesses software as a service, has a core

competency in data management, and, as noted above, was a pioneer in web services long before web

services even had a name. However, DoubleClick was ultimately limited by its business model. It bought into

the '90s notion that the web was about publishing, not participation; that advertisers, not consumers, ought to

call the shots; that size mattered, and that the internet was increasingly being dominated by the top websites

as measured by MediaMetrix and other web ad scoring companies.

As a result, DoubleClick proudly cites on its website "over 2000 successful implementations" of its software.

Yahoo! Search Marketing (formerly Overture) and Google AdSense, by contrast, already serve hundreds of

thousands of advertisers apiece.

Overture and Google's success came from an understanding of what Chris Anderson refers to as "the long

tail," the collective power of the small sites that make up the bulk of the web's content. DoubleClick's

offerings require a formal sales contract, limiting their market to the few thousand largest websites. Overture

and Google figured out how to enable ad placement on virtually any web page. What's more, they eschewed

publisher/ad-agency friendly advertising formats such as banner ads and popups in favor of minimally

intrusive, context-sensitive, consumer-friendly text advertising.

The Web 2.0 lesson: leverage customer-self service and algorithmic data management to reach out to the

entire web, to the edges and not just the center, to the long tail and not just the head.

Not surprisingly, other web 2.0 success stories demonstrate this same

behavior. eBay enables occasional transactions of only a few dollars

between single individuals, acting as an automated intermediary.

Napster (though shut down for legal reasons) built its network not by

building a centralized song database, but by architecting a system in

such a way that every downloader also became a server, and thus grew

the network.

Akamai vs. BitTorrent

Like DoubleClick, Akamai is optimized to do business with the head,

not the tail, with the center, not the edges. While it serves the benefit

of the individuals at the edge of the web by smoothing their access to

the high-demand sites at the center, it collects its revenue from those

central sites.

BitTorrent, like other pioneers in the P2P movement, takes a radical

approach to internet decentralization. Every client is also a server;

files are broken up into fragments that can be served from multiple

locations, transparently harnessing the network of downloaders to

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

5 of 16 12/31/2006 9:27 PM

different business model: On the

one side, a single software

provider, whose massive installed

base and tightly integrated

operating system and APIs give

control over the programming

paradigm; on the other, a system

without an owner, tied together by

a set of protocols, open standards

and agreements for cooperation.

Windows represents the pinnacle

of proprietary control via software

APIs. Netscape tried to wrest

control from Microsoft using the

same techniques that Microsoft

itself had used against other rivals,

and failed. But Apache, which held

to the open standards of the web,

has prospered. The battle is no

longer unequal, a platform versus a

single application, but platform

versus platform, with the question

being which platform, and more

profoundly, which architecture,

and which business model, is

better suited to the opportunity

ahead.

Windows was a brilliant solution

to the problems of the early PC

era. It leveled the playing field for

application developers, solving a

host of problems that had

previously bedeviled the industry.

But a single monolithic approach,

controlled by a single vendor, is no

longer a solution, it's a problem.

Communications-oriented systems,

as the internet-as-platform most

certainly is, require

interoperability. Unless a vendor

can control both ends of every

interaction, the possibilities of user

lock-in via software APIs are

limited.

Any Web 2.0 vendor that seeks to

lock in its application gains by

provide both bandwidth and data to other users. The more popular the

file, in fact, the faster it can be served, as there are more users

providing bandwidth and fragments of the complete file.

BitTorrent thus demonstrates a key Web 2.0 principle: the service

automatically gets better the more people use it. While Akamai must

add servers to improve service, every BitTorrent consumer brings his

own resources to the party. There's an implicit "architecture of

participation", a built-in ethic of cooperation, in which the service acts

primarily as an intelligent broker, connecting the edges to each other

and harnessing the power of the users themselves.

2. Harnessing Collective Intelligence

The central principle behind the success of the giants born in the Web

1.0 era who have survived to lead the Web 2.0 era appears to be this,

that they have embraced the power of the web to harness collective

intelligence:

Hyperlinking is the foundation of the web. As users add new

content, and new sites, it is bound in to the structure of the web

by other users discovering the content and linking to it. Much as

synapses form in the brain, with associations becoming stronger

through repetition or intensity, the web of connections grows

organically as an output of the collective activity of all web

users.

Yahoo!, the first great internet success story, was born as a

catalog, or directory of links, an aggregation of the best work of

thousands, then millions of web users. While Yahoo! has since

moved into the business of creating many types of content, its

role as a portal to the collective work of the net's users remains

the core of its value.

Google's breakthrough in search, which quickly made it the

undisputed search market leader, was PageRank, a method of

using the link structure of the web rather than just the

characteristics of documents to provide better search results.

eBay's product is the collective activity of all its users; like the

web itself, eBay grows organically in response to user activity,

and the company's role is as an enabler of a context in which

that user activity can happen. What's more, eBay's competitive

advantage comes almost entirely from the critical mass of

buyers and sellers, which makes any new entrant offering

similar services significantly less attractive.

Amazon sells the same products as competitors such as

Barnesandnoble.com, and they receive the same product

descriptions, cover images, and editorial content from their

vendors. But Amazon has made a science of user engagement.

They have an order of magnitude more user reviews, invitations

to participate in varied ways on virtually every page--and even

more importantly, they use user activity to produce better search

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

6 of 16 12/31/2006 9:27 PM

controlling the platform will, by

definition, no longer be playing to

the strengths of the platform.

This is not to say that there are not

opportunities for lock-in and

competitive advantage, but we

believe they are not to be found via

control over software APIs and

protocols. There is a new game

afoot. The companies that succeed

in the Web 2.0 era will be those

that understand the rules of that

game, rather than trying to go back

to the rules of the PC software era.

results. While a Barnesandnoble.com search is likely to lead

with the company's own products, or sponsored results, Amazon

always leads with "most popular", a real-time computation

based not only on sales but other factors that Amazon insiders

call the "flow" around products. With an order of magnitude

more user participation, it's no surprise that Amazon's sales also

outpace competitors.

Now, innovative companies that pick up on this insight and perhaps

extend it even further, are making their mark on the web:

Wikipedia, an online encyclopedia based on the unlikely notion

that an entry can be added by any web user, and edited by any

other, is a radical experiment in trust, applying Eric Raymond's

dictum (originally coined in the context of open source

software) that "with enough eyeballs, all bugs are shallow," to

content creation. Wikipedia is already in the top 100 websites,

and many think it will be in the top ten before long. This is a

profound change in the dynamics of content creation!

Sites like del.icio.us and Flickr, two companies that have received a great deal of attention of late, have

pioneered a concept that some people call "folksonomy" (in contrast to taxonomy), a style of

collaborative categorization of sites using freely chosen keywords, often referred to as tags. Tagging

allows for the kind of multiple, overlapping associations that the brain itself uses, rather than rigid

categories. In the canonical example, a Flickr photo of a puppy might be tagged both "puppy" and

"cute"--allowing for retrieval along natural axes generated user activity.

Collaborative spam filtering products like Cloudmark aggregate the individual decisions of email users

about what is and is not spam, outperforming systems that rely on analysis of the messages themselves.

It is a truism that the greatest internet success stories don't advertise their products. Their adoption is

driven by "viral marketing"--that is, recommendations propagating directly from one user to another.

You can almost make the case that if a site or product relies on advertising to get the word out, it isn't

Web 2.0.

Even much of the infrastructure of the web--including the Linux, Apache, MySQL, and Perl, PHP, or

Python code involved in most web servers--relies on the peer-production methods of open source, in

themselves an instance of collective, net-enabled intelligence. There are more than 100,000 open

source software projects listed on SourceForge.net. Anyone can add a project, anyone can download

and use the code, and new projects migrate from the edges to the center as a result of users putting

them to work, an organic software adoption process relying almost entirely on viral marketing.

The lesson: Network effects from user contributions are the key to market dominance in the Web 2.0 era.

Blogging and the Wisdom of Crowds

One of the most highly touted features of the Web 2.0 era is the rise of blogging. Personal home pages have

been around since the early days of the web, and the personal diary and daily opinion column around much

longer than that, so just what is the fuss all about?

At its most basic, a blog is just a personal home page in diary format. But as Rich Skrenta notes, the

chronological organization of a blog "seems like a trivial difference, but it drives an entirely different

delivery, advertising and value chain."

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

7 of 16 12/31/2006 9:27 PM

The Architecture of

Participation

Some systems are designed to

encourage participation. In his

paper, The Cornucopia of the

Commons, Dan Bricklin noted that

there are three ways to build a

large database. The first,

demonstrated by Yahoo!, is to pay

people to do it. The second,

inspired by lessons from the open

source community, is to get

volunteers to perform the same

task. The Open Directory Project,

an open source Yahoo competitor,

is the result. But Napster

demonstrated a third way. Because

Napster set its defaults to

automatically serve any music that

was downloaded, every user

automatically helped to build the

value of the shared database. This

same approach has been followed

by all other P2P file sharing

services.

One of the key lessons of the Web

2.0 era is this: Users add value.

But only a small percentage of

users will go to the trouble of

adding value to your application

via explicit means. Therefore, Web

2.0 companies set inclusive

defaults for aggregating user data

and building value as a side-effect

of ordinary use of the application.

One of the things that has made a difference is a technology called RSS. RSS is the most significant advance

in the fundamental architecture of the web since early hackers realized that CGI could be used to create

database-backed websites. RSS allows someone to link not just to a page, but to subscribe to it, with

notification every time that page changes. Skrenta calls this "the incremental web." Others call it the "live

web".

Now, of course, "dynamic websites" (i.e., database-backed sites with dynamically generated content) replaced

static web pages well over ten years ago. What's dynamic about the live web are not just the pages, but the

links. A link to a weblog is expected to point to a perennially changing page, with "permalinks" for any

individual entry, and notification for each change. An RSS feed is thus a much stronger link than, say a

bookmark or a link to a single page.

RSS also means that the web browser is not the only means of

viewing a web page. While some RSS aggregators, such as Bloglines,

are web-based, others are desktop clients, and still others allow users

of portable devices to subscribe to constantly updated content.

RSS is now being used to push not just notices of new blog entries,

but also all kinds of data updates, including stock quotes, weather

data, and photo availability. This use is actually a return to one of its

roots: RSS was born in 1997 out of the confluence of Dave Winer's

"Really Simple Syndication" technology, used to push out blog

updates, and Netscape's "Rich Site Summary", which allowed users to

create custom Netscape home pages with regularly updated data flows.

Netscape lost interest, and the technology was carried forward by

blogging pioneer Userland, Winer's company. In the current crop of

applications, we see, though, the heritage of both parents.

But RSS is only part of what makes a weblog different from an

ordinary web page. Tom Coates remarks on the significance of the

permalink:

It may seem like a trivial piece of functionality now, but it was

effectively the device that turned weblogs from an

ease-of-publishing phenomenon into a conversational mess of

overlapping communities. For the first time it became relatively

easy to gesture directly at a highly specific post on someone

else's site and talk about it. Discussion emerged. Chat emerged.

And - as a result - friendships emerged or became more

entrenched. The permalink was the first - and most successful -

attempt to build bridges between weblogs.

In many ways, the combination of RSS and permalinks adds many of

the features of NNTP, the Network News Protocol of the Usenet, onto

HTTP, the web protocol. The "blogosphere" can be thought of as a

new, peer-to-peer equivalent to Usenet and bulletin-boards, the

conversational watering holes of the early internet. Not only can

people subscribe to each others' sites, and easily link to individual

comments on a page, but also, via a mechanism known as trackbacks,

they can see when anyone else links to their pages, and can respond,

either with reciprocal links, or by adding comments.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

8 of 16 12/31/2006 9:27 PM

As noted above, they build systems

that get better the more people use

them.

Mitch Kapor once noted that

"architecture is politics."

Participation is intrinsic to

Napster, part of its fundamental

architecture.

This architectural insight may also

be more central to the success of

open source software than the

more frequently cited appeal to

volunteerism. The architecture of

the internet, and the World Wide

Web, as well as of open source

software projects like Linux,

Apache, and Perl, is such that

users pursuing their own "selfish"

interests build collective value as

an automatic byproduct. Each of

these projects has a small core,

well-defined extension

mechanisms, and an approach that

lets any well-behaved component

be added by anyone, growing the

outer layers of what Larry Wall,

the creator of Perl, refers to as "the

onion." In other words, these

technologies demonstrate network

effects, simply through the way

that they have been designed.

These projects can be seen to have

a natural architecture of

participation. But as Amazon

demonstrates, by consistent effort

(as well as economic incentives

such as the Associates program), it

is possible to overlay such an

architecture on a system that

would not normally seem to

possess it.

Interestingly, two-way links were the goal of early hypertext systems

like Xanadu. Hypertext purists have celebrated trackbacks as a step

towards two way links. But note that trackbacks are not properly

two-way--rather, they are really (potentially) symmetrical one-way

links that create the effect of two way links. The difference may seem

subtle, but in practice it is enormous. Social networking systems like

Friendster, Orkut, and LinkedIn, which require acknowledgment by

the recipient in order to establish a connection, lack the same

scalability as the web. As noted by Caterina Fake, co-founder of the

Flickr photo sharing service, attention is only coincidentally

reciprocal. (Flickr thus allows users to set watch lists--any user can

subscribe to any other user's photostream via RSS. The object of

attention is notified, but does not have to approve the connection.)

If an essential part of Web 2.0 is harnessing collective intelligence,

turning the web into a kind of global brain, the blogosphere is the

equivalent of constant mental chatter in the forebrain, the voice we

hear in all of our heads. It may not reflect the deep structure of the

brain, which is often unconscious, but is instead the equivalent of

conscious thought. And as a reflection of conscious thought and

attention, the blogosphere has begun to have a powerful effect.

First, because search engines use link structure to help predict useful

pages, bloggers, as the most prolific and timely linkers, have a

disproportionate role in shaping search engine results. Second,

because the blogging community is so highly self-referential, bloggers

paying attention to other bloggers magnifies their visibility and power.

The "echo chamber" that critics decry is also an amplifier.

If it were merely an amplifier, blogging would be uninteresting. But

like Wikipedia, blogging harnesses collective intelligence as a kind of

filter. What James Suriowecki calls "the wisdom of crowds" comes

into play, and much as PageRank produces better results than analysis

of any individual document, the collective attention of the blogosphere

selects for value.

While mainstream media may see individual blogs as competitors,

what is really unnerving is that the competition is with the

blogosphere as a whole. This is not just a competition between sites,

but a competition between business models. The world of Web 2.0 is

also the world of what Dan Gillmor calls "we, the media," a world in

which "the former audience", not a few people in a back room, decides

what's important.

3. Data is the Next Intel Inside

Every significant internet application to date has been backed by a specialized database: Google's web crawl,

Yahoo!'s directory (and web crawl), Amazon's database of products, eBay's database of products and sellers,

MapQuest's map databases, Napster's distributed song database. As Hal Varian remarked in a personal

conversation last year, "SQL is the new HTML." Database management is a core competency of Web 2.0

companies, so much so that we have sometimes referred to these applications as "infoware" rather than

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

9 of 16 12/31/2006 9:27 PM

merely software.

This fact leads to a key question: Who owns the data?

In the internet era, one can already see a number of cases where control over the database has led to market

control and outsized financial returns. The monopoly on domain name registry initially granted by

government fiat to Network Solutions (later purchased by Verisign) was one of the first great moneymakers

of the internet. While we've argued that business advantage via controlling software APIs is much more

difficult in the age of the internet, control of key data sources is not, especially if those data sources are

expensive to create or amenable to increasing returns via network effects.

Look at the copyright notices at the base of every map served by MapQuest, maps.yahoo.com,

maps.msn.com, or maps.google.com, and you'll see the line "Maps copyright NavTeq, TeleAtlas," or with the

new satellite imagery services, "Images copyright Digital Globe." These companies made substantial

investments in their databases (NavTeq alone reportedly invested $750 million to build their database of

street addresses and directions. Digital Globe spent $500 million to launch their own satellite to improve on

government-supplied imagery.) NavTeq has gone so far as to imitate Intel's familiar Intel Inside logo: Cars

with navigation systems bear the imprint, "NavTeq Onboard." Data is indeed the Intel Inside of these

applications, a sole source component in systems whose software infrastructure is largely open source or

otherwise commodified.

The now hotly contested web mapping arena demonstrates how a failure to understand the importance of

owning an application's core data will eventually undercut its competitive position. MapQuest pioneered the

web mapping category in 1995, yet when Yahoo!, and then Microsoft, and most recently Google, decided to

enter the market, they were easily able to offer a competing application simply by licensing the same data.

Contrast, however, the position of Amazon.com. Like competitors such as Barnesandnoble.com, its original

database came from ISBN registry provider R.R. Bowker. But unlike MapQuest, Amazon relentlessly

enhanced the data, adding publisher-supplied data such as cover images, table of contents, index, and sample

material. Even more importantly, they harnessed their users to annotate the data, such that after ten years,

Amazon, not Bowker, is the primary source for bibliographic data on books, a reference source for scholars

and librarians as well as consumers. Amazon also introduced their own proprietary identifier, the ASIN,

which corresponds to the ISBN where one is present, and creates an equivalent namespace for products

without one. Effectively, Amazon "embraced and extended" their data suppliers.

Imagine if MapQuest had done the same thing, harnessing their users to annotate maps and directions, adding

layers of value. It would have been much more difficult for competitors to enter the market just by licensing

the base data.

The recent introduction of Google Maps provides a living laboratory for the competition between application

vendors and their data suppliers. Google's lightweight programming model has led to the creation of

numerous value-added services in the form of mashups that link Google Maps with other internet-accessible

data sources. Paul Rademacher's housingmaps.com, which combines Google Maps with Craigslist apartment

rental and home purchase data to create an interactive housing search tool, is the pre-eminent example of

such a mashup.

At present, these mashups are mostly innovative experiments, done by hackers. But entrepreneurial activity

follows close behind. And already, one can see that for at least one class of developer, Google has taken the

role of data source away from Navteq and inserted themselves as a favored intermediary. We expect to see

battles between data suppliers and application vendors in the next few years, as both realize just how

important certain classes of data will become as building blocks for Web 2.0 applications.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

10 of 16 12/31/2006 9:27 PM

The race is on to own certain classes of core data: location, identity, calendaring of public events, product

identifiers and namespaces. In many cases, where there is significant cost to create the data, there may be an

opportunity for an Intel Inside style play, with a single source for the data. In others, the winner will be the

company that first reaches critical mass via user aggregation, and turns that aggregated data into a system

service.

For example, in the area of identity, PayPal, Amazon's 1-click, and the millions of users of communications

systems, may all be legitimate contenders to build a network-wide identity database. (In this regard, Google's

recent attempt to use cell phone numbers as an identifier for Gmail accounts may be a step towards

embracing and extending the phone system.) Meanwhile, startups like Sxip are exploring the potential of

federated identity, in quest of a kind of "distributed 1-click" that will provide a seamless Web 2.0 identity

subsystem. In the area of calendaring, EVDB is an attempt to build the world's largest shared calendar via a

wiki-style architecture of participation. While the jury's still out on the success of any particular startup or

approach, it's clear that standards and solutions in these areas, effectively turning certain classes of data into

reliable subsystems of the "internet operating system", will enable the next generation of applications.

A further point must be noted with regard to data, and that is user concerns about privacy and their rights to

their own data. In many of the early web applications, copyright is only loosely enforced. For example,

Amazon lays claim to any reviews submitted to the site, but in the absence of enforcement, people may repost

the same review elsewhere. However, as companies begin to realize that control over data may be their chief

source of competitive advantage, we may see heightened attempts at control.

Much as the rise of proprietary software led to the Free Software movement, we expect the rise of proprietary

databases to result in a Free Data movement within the next decade. One can see early signs of this

countervailing trend in open data projects such as Wikipedia, the Creative Commons, and in software

projects like Greasemonkey, which allow users to take control of how data is displayed on their computer.

4. End of the Software Release Cycle

As noted above in the discussion of Google vs. Netscape, one of the defining characteristics of internet era

software is that it is delivered as a service, not as a product. This fact leads to a number of fundamental

changes in the business model of such a company:

Operations must become a core competency. Google's or Yahoo!'s expertise in product development

must be matched by an expertise in daily operations. So fundamental is the shift from software as

artifact to software as service that the software will cease to perform unless it is maintained on a daily

basis. Google must continuously crawl the web and update its indices, continuously filter out link spam

and other attempts to influence its results, continuously and dynamically respond to hundreds of

millions of asynchronous user queries, simultaneously matching them with context-appropriate

advertisements.

It's no accident that Google's system administration, networking, and load balancing techniques are

perhaps even more closely guarded secrets than their search algorithms. Google's success at automating

these processes is a key part of their cost advantage over competitors.

It's also no accident that scripting languages such as Perl, Python, PHP, and now Ruby, play such a

large role at web 2.0 companies. Perl was famously described by Hassan Schroeder, Sun's first

webmaster, as "the duct tape of the internet." Dynamic languages (often called scripting languages and

looked down on by the software engineers of the era of software artifacts) are the tool of choice for

system and network administrators, as well as application developers building dynamic systems that

1.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

11 of 16 12/31/2006 9:27 PM

A Web 2.0 Investment Thesis

Venture capitalist Paul Kedrosky

writes: "The key is to find the

actionable investments where you

disagree with the consensus". It's

interesting to see how each Web

2.0 facet involves disagreeing with

the consensus: everyone was

emphasizing keeping data private,

Flickr/Napster/et al. make it

public. It's not just disagreeing to

be disagreeable (pet food! online!),

it's disagreeing where you can

build something out of the

differences. Flickr builds

communities, Napster built breadth

of collection.

Another way to look at it is that

the successful companies all give

up something expensive but

considered critical to get

require constant change.

Users must be treated as co-developers, in a reflection of open source development practices (even if

the software in question is unlikely to be released under an open source license.) The open source

dictum, "release early and release often" in fact has morphed into an even more radical position, "the

perpetual beta," in which the product is developed in the open, with new features slipstreamed in on a

monthly, weekly, or even daily basis. It's no accident that services such as Gmail, Google Maps, Flickr,

del.icio.us, and the like may be expected to bear a "Beta" logo for years at a time.

Real time monitoring of user behavior to see just which new features are used, and how they are used,

thus becomes another required core competency. A web developer at a major online service remarked:

"We put up two or three new features on some part of the site every day, and if users don't adopt them,

we take them down. If they like them, we roll them out to the entire site."

Cal Henderson, the lead developer of Flickr, recently revealed that they deploy new builds up to every

half hour. This is clearly a radically different development model! While not all web applications are

developed in as extreme a style as Flickr, almost all web applications have a development cycle that is

radically unlike anything from the PC or client-server era. It is for this reason that a recent ZDnet

editorial concluded that Microsoft won't be able to beat Google: "Microsoft's business model depends

on everyone upgrading their computing environment every two to three years. Google's depends on

everyone exploring what's new in their computing environment every day."

2.

While Microsoft has demonstrated enormous ability to learn from and ultimately best its competition, there's

no question that this time, the competition will require Microsoft (and by extension, every other existing

software company) to become a deeply different kind of company. Native Web 2.0 companies enjoy a natural

advantage, as they don't have old patterns (and corresponding business models and revenue sources) to shed.

5. Lightweight Programming Models

Once the idea of web services became au courant, large companies

jumped into the fray with a complex web services stack designed to

create highly reliable programming environments for distributed

applications.

But much as the web succeeded precisely because it overthrew much

of hypertext theory, substituting a simple pragmatism for ideal design,

RSS has become perhaps the single most widely deployed web service

because of its simplicity, while the complex corporate web services

stacks have yet to achieve wide deployment.

Similarly, Amazon.com's web services are provided in two forms: one

adhering to the formalisms of the SOAP (Simple Object Access

Protocol) web services stack, the other simply providing XML data

over HTTP, in a lightweight approach sometimes referred to as REST

(Representational State Transfer). While high value B2B connections

(like those between Amazon and retail partners like ToysRUs) use the

SOAP stack, Amazon reports that 95% of the usage is of the

lightweight REST service.

This same quest for simplicity can be seen in other "organic" web

services. Google's recent release of Google Maps is a case in point.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

12 of 16 12/31/2006 9:27 PM

something valuable for free that

was once expensive. For example,

Wikipedia gives up central

editorial control in return for speed

and breadth. Napster gave up on

the idea of "the catalog" (all the

songs the vendor was selling) and

got breadth. Amazon gave up on

the idea of having a physical

storefront but got to serve the

entire world. Google gave up on

the big customers (initially) and

got the 80% whose needs weren't

being met. There's something very

aikido (using your opponent's force

against them) in saying "you know,

you're right--absolutely anyone in

the whole world CAN update this

article. And guess what, that's bad

news for you."

--Nat Torkington

Google Maps' simple AJAX (Javascript and XML) interface was

quickly decrypted by hackers, who then proceeded to remix the data

into new services.

Mapping-related web services had been available for some time from

GIS vendors such as ESRI as well as from MapQuest and Microsoft

MapPoint. But Google Maps set the world on fire because of its

simplicity. While experimenting with any of the formal

vendor-supported web services required a formal contract between the

parties, the way Google Maps was implemented left the data for the

taking, and hackers soon found ways to creatively re-use that data.

There are several significant lessons here:

Support lightweight programming models that allow for loosely

coupled systems. The complexity of the corporate-sponsored

web services stack is designed to enable tight coupling. While

this is necessary in many cases, many of the most interesting

applications can indeed remain loosely coupled, and even

fragile. The Web 2.0 mindset is very different from the

traditional IT mindset!

1.

Think syndication, not coordination. Simple web services, like

RSS and REST-based web services, are about syndicating data

outwards, not controlling what happens when it gets to the other

end of the connection. This idea is fundamental to the internet

itself, a reflection of what is known as the end-to-end principle.

2.

Design for "hackability" and remixability. Systems like the original web, RSS, and AJAX all have this

in common: the barriers to re-use are extremely low. Much of the useful software is actually open

source, but even when it isn't, there is little in the way of intellectual property protection. The web

browser's "View Source" option made it possible for any user to copy any other user's web page; RSS

was designed to empower the user to view the content he or she wants, when it's wanted, not at the

behest of the information provider; the most successful web services are those that have been easiest to

take in new directions unimagined by their creators. The phrase "some rights reserved," which was

popularized by the Creative Commons to contrast with the more typical "all rights reserved," is a useful

guidepost.

3.

Innovation in Assembly

Lightweight business models are a natural concomitant of lightweight programming and lightweight

connections. The Web 2.0 mindset is good at re-use. A new service like housingmaps.com was built simply

by snapping together two existing services. Housingmaps.com doesn't have a business model (yet)--but for

many small-scale services, Google AdSense (or perhaps Amazon associates fees, or both) provides the

snap-in equivalent of a revenue model.

These examples provide an insight into another key web 2.0 principle, which we call "innovation in

assembly." When commodity components are abundant, you can create value simply by assembling them in

novel or effective ways. Much as the PC revolution provided many opportunities for innovation in assembly

of commodity hardware, with companies like Dell making a science out of such assembly, thereby defeating

companies whose business model required innovation in product development, we believe that Web 2.0 will

provide opportunities for companies to beat the competition by getting better at harnessing and integrating

services provided by others.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

13 of 16 12/31/2006 9:27 PM

6. Software Above the Level of a Single Device

One other feature of Web 2.0 that deserves mention is the fact that it's no longer limited to the PC platform.

In his parting advice to Microsoft, long time Microsoft developer Dave Stutz pointed out that "Useful

software written above the level of the single device will command high margins for a long time to come."

Of course, any web application can be seen as software above the level of a single device. After all, even the

simplest web application involves at least two computers: the one hosting the web server and the one hosting

the browser. And as we've discussed, the development of the web as platform extends this idea to synthetic

applications composed of services provided by multiple computers.

But as with many areas of Web 2.0, where the "2.0-ness" is not something new, but rather a fuller realization

of the true potential of the web platform, this phrase gives us a key insight into how to design applications

and services for the new platform.

To date, iTunes is the best exemplar of this principle. This application seamlessly reaches from the handheld

device to a massive web back-end, with the PC acting as a local cache and control station. There have been

many previous attempts to bring web content to portable devices, but the iPod/iTunes combination is one of

the first such applications designed from the ground up to span multiple devices. TiVo is another good

example.

iTunes and TiVo also demonstrate many of the other core principles of Web 2.0. They are not web

applications per se, but they leverage the power of the web platform, making it a seamless, almost invisible

part of their infrastructure. Data management is most clearly the heart of their offering. They are services, not

packaged applications (although in the case of iTunes, it can be used as a packaged application, managing

only the user's local data.) What's more, both TiVo and iTunes show some budding use of collective

intelligence, although in each case, their experiments are at war with the IP lobby's. There's only a limited

architecture of participation in iTunes, though the recent addition of podcasting changes that equation

substantially.

This is one of the areas of Web 2.0 where we expect to see some of the greatest change, as more and more

devices are connected to the new platform. What applications become possible when our phones and our cars

are not consuming data but reporting it? Real time traffic monitoring, flash mobs, and citizen journalism are

only a few of the early warning signs of the capabilities of the new platform.

7. Rich User Experiences

As early as Pei Wei's Viola browser in 1992, the web was being used to deliver "applets" and other kinds of

active content within the web browser. Java's introduction in 1995 was framed around the delivery of such

applets. JavaScript and then DHTML were introduced as lightweight ways to provide client side

programmability and richer user experiences. Several years ago, Macromedia coined the term "Rich Internet

Applications" (which has also been picked up by open source Flash competitor Laszlo Systems) to highlight

the capabilities of Flash to deliver not just multimedia content but also GUI-style application experiences.

However, the potential of the web to deliver full scale applications didn't hit the mainstream till Google

introduced Gmail, quickly followed by Google Maps, web based applications with rich user interfaces and

PC-equivalent interactivity. The collection of technologies used by Google was christened AJAX, in a

seminal essay by Jesse James Garrett of web design firm Adaptive Path. He wrote:

"Ajax isn't a technology. It's really several technologies, each flourishing in its own right, coming

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

14 of 16 12/31/2006 9:27 PM

Web 2.0 Design Patterns

In his book, A Pattern Language, Christopher

Alexander prescribes a format for the concise

description of the solution to architectural

problems. He writes: "Each pattern describes a

problem that occurs over and over again in our

environment, and then describes the core of the

solution to that problem, in such a way that you

can use this solution a million times over, without

ever doing it the same way twice."

The Long Tail

Small sites make up the bulk of the

internet's content; narrow niches make up

the bulk of internet's the possible

applications. Therefore: Leverage

customer-self service and algorithmic data

management to reach out to the entire web,

to the edges and not just the center, to the

long tail and not just the head.

1.

Data is the Next Intel Inside

Applications are increasingly data-driven.

Therefore: For competitive advantage, seek

to own a unique, hard-to-recreate source of

data.

2.

Users Add Value

The key to competitive advantage in internet

applications is the extent to which users add

their own data to that which you provide.

Therefore: Don't restrict your "architecture

of participation" to software development.

Involve your users both implicitly and

explicitly in adding value to your

application.

3.

Network Effects by Default

Only a small percentage of users will go to

the trouble of adding value to your

application. Therefore: Set inclusive

defaults for aggregating user data as a

4.

together in powerful new ways. Ajax incorporates:

standards-based presentation using XHTML and CSS;

dynamic display and interaction using the Document Object Model;

data interchange and manipulation using XML and XSLT;

asynchronous data retrieval using XMLHttpRequest;

and JavaScript binding everything together."

AJAX is also a key component of Web 2.0

applications such as Flickr, now part of Yahoo!,

37signals' applications basecamp and backpack, as

well as other Google applications such as Gmail and

Orkut. We're entering an unprecedented period of user

interface innovation, as web developers are finally able

to build web applications as rich as local PC-based

applications.

Interestingly, many of the capabilities now being

explored have been around for many years. In the late

'90s, both Microsoft and Netscape had a vision of the

kind of capabilities that are now finally being realized,

but their battle over the standards to be used made

cross-browser applications difficult. It was only when

Microsoft definitively won the browser wars, and there

was a single de-facto browser standard to write to, that

this kind of application became possible. And while

Firefox has reintroduced competition to the browser

market, at least so far we haven't seen the destructive

competition over web standards that held back

progress in the '90s.

We expect to see many new web applications over the

next few years, both truly novel applications, and rich

web reimplementations of PC applications. Every

platform change to date has also created opportunities

for a leadership change in the dominant applications of

the previous platform.

Gmail has already provided some interesting

innovations in email, combining the strengths of the

web (accessible from anywhere, deep database

competencies, searchability) with user interfaces that

approach PC interfaces in usability. Meanwhile, other

mail clients on the PC platform are nibbling away at

the problem from the other end, adding IM and

presence capabilities. How far are we from an

integrated communications client combining the best

of email, IM, and the cell phone, using VoIP to add

voice capabilities to the rich capabilities of web

applications? The race is on.

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

15 of 16 12/31/2006 9:27 PM

side-effect of their use of the application.

Some Rights Reserved. Intellectual

property protection limits re-use and

prevents experimentation. Therefore: When

benefits come from collective adoption, not

private restriction, make sure that barriers to

adoption are low. Follow existing standards,

and use licenses with as few restrictions as

possible. Design for "hackability" and

"remixability."

5.

The Perpetual Beta

When devices and programs are connected

to the internet, applications are no longer

software artifacts, they are ongoing services.

Therefore: Don't package up new features

into monolithic releases, but instead add

them on a regular basis as part of the normal

user experience. Engage your users as

real-time testers, and instrument the service

so that you know how people use the new

features.

6.

Cooperate, Don't Control

Web 2.0 applications are built of a network

of cooperating data services. Therefore:

Offer web services interfaces and content

syndication, and re-use the data services of

others. Support lightweight programming

models that allow for loosely-coupled

systems.

7.

Software Above the Level of a Single

Device

The PC is no longer the only access device

for internet applications, and applications

that are limited to a single device are less

valuable than those that are connected.

Therefore: Design your application from the

get-go to integrate services across handheld

devices, PCs, and internet servers.

8.

It's easy to see how Web 2.0 will also remake the

address book. A Web 2.0-style address book would

treat the local address book on the PC or phone merely

as a cache of the contacts you've explicitly asked the

system to remember. Meanwhile, a web-based

synchronization agent, Gmail-style, would remember

every message sent or received, every email address

and every phone number used, and build social

networking heuristics to decide which ones to offer up

as alternatives when an answer wasn't found in the

local cache. Lacking an answer there, the system

would query the broader social network.

A Web 2.0 word processor would support wiki-style

collaborative editing, not just standalone documents.

But it would also support the rich formatting we've

come to expect in PC-based word processors. Writely

is a good example of such an application, although it

hasn't yet gained wide traction.

Nor will the Web 2.0 revolution be limited to PC

applications. Salesforce.com demonstrates how the

web can be used to deliver software as a service, in

enterprise scale applications such as CRM.

The competitive opportunity for new entrants is to

fully embrace the potential of Web 2.0. Companies

that succeed will create applications that learn from

their users, using an architecture of participation to

build a commanding advantage not just in the software

interface, but in the richness of the shared data.

Core Competencies of Web 2.0 Companies

In exploring the seven principles above, we've

highlighted some of the principal features of Web 2.0.

Each of the examples we've explored demonstrates

one or more of those key principles, but may miss

others. Let's close, therefore, by summarizing what we

believe to be the core competencies of Web 2.0

companies:

Services, not packaged software, with cost-effective scalability

Control over unique, hard-to-recreate data sources that get richer as more people use them

Trusting users as co-developers

Harnessing collective intelligence

Leveraging the long tail through customer self-service

Software above the level of a single device

Lightweight user interfaces, development models, AND business models

The next time a company claims that it's "Web 2.0," test their features against the list above. The more points

O'Reilly Network: What Is Web 2.0 http://www.oreillynet.com/lpt/a/6228

16 of 16 12/31/2006 9:27 PM

they score, the more they are worthy of the name. Remember, though, that excellence in one area may be

more telling than some small steps in all seven.

Tim O'Reilly

O’Reilly Media, Inc., tim@oreilly.com

President and CEO

Copyright © 2006 O'Reilly Media, Inc.

